

Synthesis of Nanoparticles Using Reverse Micelles

By
Everett E. Carpenter
Complex Materials Section

Synthesis methods

- - Ball milling
 - Pulsed laser deposition
 - Sputtering

- Physical methods Chemical Methods
 - Sonochemical
 - Non-aqueous crystallization
 - Micelles

Self-Assembly Techniques

Surfactant Methods

- Surfactants are molecules which have a hydrophobic and hydrophilic parts
- Driven by Hydrophobic
 Interactions, and surface tension

Surfactant Phase Diagram

• Within micelle region, size of micelle is controlled Microemulsion

$$\omega = \frac{[H_2O]}{[Surfactant]}$$

Experimental Overview

Add to AOT in isooctane solution

Let react in air 2 hours

Reactions

- Ferrites
 - γ-Fe₂O₃, Fe₃O₄,MnFe₂O₄, CoFe₂O₄
 - LiFe₂O₄, MgFe₂O₄ ,BaFe₁₂O₁₉
- Perovskites
 - NaMnF₃, KMnF₃
- Metals
 - Iron, Cobalt
 - Gold, Silver, Palladium,
 Platinum
 - Bismuth

- Alloy Nanoparticles
 - FePt, FePt₃, CoPt,
 CoPt₃, CoPt₅, etc
- Semiconductors
 - CdS, CdSe, ZnSe, PbSe, etc
- Thermoelectrics
 - BiTe, BiSbTe

Advantages of Micelles

- Nanoparticle Control
- Variations in Chemical Procedure
- Variation in Processing
- Sequential Routes

Versatility

- Variations in Chemical Procedure
- Nanoparticle Control
 - Tailored size control
 - Narrow Size distribution
- Variation in Processing
- Sequential Routes

Variations in Chemical Procedure

- Reactant Concentration
 - Example MFe₂O₄ where M= Mn or Co
 - Lower M Concentration leads to MO shell over γ-Fe₂O₃ instead of Mixed Ferrite
- Oxidation Conditions
 - Example MnFe₂O₄
 - Use of Hydrogen Peroxide leads to change in cation distribution

Extended X-ray Absorption Fine Structure (EXAFS)

- Using H₂O₂ and a slightly elevated temperature (60°C) the cation distribution can drastically change
- Although cation distribution can be tailored, still in Spinel structure

Versatility

- Variation in Processing
- Nanoparticle Control
 - Tailored size control
 - Narrow Size distribution
- Variations in Chemical Procedure
 - Reactant concentrations
 - Oxidation conditions
- Sequential Routes

Variations in Processing

- By changing the surfactant system
 - Many in literature
- By changing reaction time
 - Example KMnF₃
 - Short reaction time cubic structures
 - Long reaction time spherical structures

Transmission Electron Microscopy

- Reaction quenched
- Reaction time 2 hours

13 nm Particles

39 nm Particles

Versatility

- Sequential Routes
- Variation in Processing
 - Changing surfactant systems
 - Changing reaction times
- Nanoparticle Control
 - Tailored size control
 - Narrow Size distribution
- Variations in Chemical Procedure
 - Reactant concentrations
 - Oxidation conditions

Sequential Synthesis

Creating core-shell or onion structures

• Allows for functionality without affecting magnetic properties

Experimental Overview

Transmission Electron Microscopy

Resistivity of nano-onions

Magnetoresistance measurements were taken using the fourpoint method on a compressed pellet

19.44

Applications

- Communication
 - power electronics
 - high frequency applications
- Medical
 - therapeutics
 - diagnostics
- Self-assembled structures
- Catalysis

Communication Applications

- Power Supplies
- High frequency filters
- Inductors

Medical therapeutics

Targeted drug delivery

Hyperthermic treatment

Medical diagnostics

Imaging

Optical Bar Codes

A family of Qdot particles can be made to emit a full spectrum of colors when excited with a single excitation source.

Self-assembled Structures

• Au, FePt

Hollow spheres

SiO₂ grown on PS.

Conclusion

- There is a rapidly growing need for nanostructured materials which are usable for nearly all applications
- Micelle methods are useful for synthesizing many of these materials in 5-40 nm range
- ❖ I would like to acknowledge my co-workers both at NRL and UNO who helped with this work

